Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors

نویسندگان

  • Genqiang Zhang
  • Xiong Wen (David) Lou
چکیده

Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors.

A series of flexible nanocomposite electrodes were fabricated by facile electro-deposition of cobalt and nickel double hydroxide (DH) nanosheets on porous NiCo2O4 nanowires grown radially on carbon fiber paper (CFP) for high capacity, high energy, and power density supercapacitors. Among different stoichiometries of CoxNi1-xDH nanosheets studied, Co0.67Ni0.33 DHs/NiCo2O4/CFP hybrid nanoarchitec...

متن کامل

Turning conductive carbon nanospheres into nanosheets for high-performance supercapacitors of MnO2 nanorods.

Oxidized carbon nanosheets (OCNs), produced from black carbon nanospheres and used as a conductive additive in the supercapacitor electrodes of MnO2 nanorods, can significantly improve the charge-storage performance of the symmetric MnO2-nanorod supercapacitors with a maximum specific energy of 64 W h kg(-1) and power of 3870 W kg(-1). An optimum material composition of the supercapacitor elect...

متن کامل

Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors.

We report the synthesis of two-dimensional (2D) NiCo2O4 nanosheet-coated three-dimensional graphene network (3DGN), which is then used as an electrode for high-rate, long-cycle-life supercapacitors. Using the 3DGN and nanoporous nanosheets, an ultrahigh specific capacitance (2173 F g(-1) at 6 A g(-1)), excellent rate capability (954 F g(-1) at 200 A g(-1)) and superior long-term cycling perform...

متن کامل

Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4

A biomass-templated pathway is developed for scalable synthesis of NiCo2O4@carbon aerogel electrodes for supercapacitors, where NiCo2O4 hollow nanoparticles with an average outer diameter of 30-40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo2O4 aerogel structure shows large specific surface area (167.8 m2 g-1), high specific capacitance (903.2 F g-1 at ...

متن کامل

Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors

Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013